
Singing Data Labeling Tool
Milestone 3 Progress Evaluation Report

Group members:
Nandith Narayan nnarayan2018@my.fit.edu
Avinash Persaud apersaud2018@my.fit.edu
Carlos Cepeda ccepeda2018@my.fit.edu

Advisor:
Dr. William Shoaff wds@fit.edu

Client:
Caleb Matthew Long, Appalachian State University

Task Completion
%

Nandith
Narayan

Avinash
Persaud

Carlos
Cepeda

To Do

1. Add
Spectrogram
View to the
main window
of the tool’s
GUI.

100% 80% 20%

2. Split
classification
of phonemes
based on type
and train
models for
classification
of phonemes.

100% 90% 10%

3. Create and
train models
for phoneme
boundary
detection.

80% 80% Implement a
method to
convert the
output to the
boundaries
between
phonemes

4. Custom
theme and
color map
support

100% 50% 50%



Task Discussion:
Task 1:
Adding the spectrogram to the GUI proved to be a difficult task as it posed multiple challenges
we had to overcome. To compute the spectrogram, we wrote an implementation of the
Cooley-tukey Fast Fourier Transform algorithm. We then sliced the audio input into batches or
windows. Each window overlapped with the previous and next windows a little bit. Each window
was passed as input into the Fast Fourier Transform. The output was then used to create the
spectrogram. Here we ran into an issue; the outputs of the Fourier transform have huge ranges,
some values can be as large as a few billion while others are in the millions. To solve this, we
took the log of the spectrogram. This made our ranges way easier to handle. Then, we wrote a
python script to convert an image into a color map. We used this color map to tell the UI what
color each value should be displayed as. Our next issue was that computing the spectrogram
was computationally expensive. Our initial builds had the UI become unresponsive due to the
computation of the spectrogram taking too long. We fixed this by multi-threading the
computation of the spectrogram. This allows us to have the UI and the computation on two
separate threads. We cache the spectrogram for every audio file that’s imported in order to
prevent having to recompute the spectrogram. This lets us compute the spectrogram only once.
To get the spectrogram to scroll, we calculated the percentage of the audio that the current
zoomed screen covered and scaled the spectrogram accordingly.

Task 2:

We were successfully able to classify phonemes by splitting the task into smaller subproblems.
First we needed a dataset. The old dataset we were using was for speech. However, singing is
very different from speech. So, we tried a dataset for children’s songs. However, that dataset
grouped phonemes into syllables. This meant that we had to separate the phonemes. Since this
proved to be too difficult, we simply went with another dataset which was made by Nagoya
Institute of Technology. First, we converted all the phonemes from raw audio to a 2D image
representation of the frequencies present in the audio using the MEL spectrogram. Then, we
passed these images (20 by 40 size) to a simple CNN. This CNN classified whether the given
phoneme was a pause(break between words), consonant, or vowel. We got this model to
achieve a 99% accuracy on our test set. Below is a graphical representation of a prediction
made by the model.



As the diagram above shows, this model was near 100% accurate. The classification report for
this model is given below.

MEL Spectrogram example:



Then, we trained a model to classify the vowel phonemes. Note that these are not letters that
are vowels, rather they are phonemes which sound like vowels that are represented by letters.
We attained an accuracy of 98% on vowels. The classification report and heatmap are below for
the vowel model.

Then, we trained a model to classify the consonant
phonemes. This was a harder task for the network to
learn, hence we only got an accuracy of 81%. We would
need to further subdivide consonants into sub groups for
better classification. The classification report is to the
right.



Task 3:

More research has to be done for proper language processing tools to be implemented in the
application. This will also be taken care of over the break and be ready for M4.

Task 4:

The color map is responsible for mapping the spectrogram values to a corresponding color. To
create this color map, we wrote a simple python script that took an image of a color map and
created a one-to-one mapping from horizontal pixel value to color. Then, we mapped the
spectrogram’s values to the horizontal pixel value to get the color. We also implemented support
for custom themes. Upon startup, the tool checks a directory for the presence of any theme files
and uses them if present. Currently, we only have 1 theme apart from the default.

Contribution Discussion:

Milestone 4 task matrix:

Task Nandith Narayan Avinash Persaud Carlos Cepeda

1. Speed up
spectrogram
computation

50% 50%

2. Speed up
rendering of
waveforms

50% 50%

3. Create GUI
elements and
windows for common
tasks like project
creation and
customization

10% 10% 80%

4. Integrate phoneme
boundary detection
and classification

40% 60%

5. Allow the User to
manually add
phonemes

40% 30% 30%

6. Output the created
labels

33% 34% 33%



Milestone 4 Task Discussion:

Task 1:
Currently, the spectrogram takes a significant amount of time to compute. While this is fine for
small audio files, this doesn’t work well for larger audio files. We plan to use the FFTW library to
speed up our FFT calculation which in turn will speed up our spectrogram.

Task 2:
Currently, the waveform takes longer to render when in full screen due to the increased number
of lines needing to be drawn to the screen. We plan to increase the speed of this by caching the
wave form as an image and simply cropping and scaling said image for zoom.

Task 3:
We plan to let the user customize things like the theme and color maps as well as other
miscellaneous settings. To do this, we need to create multiple windows for accessing settings.

Task 4:
The next step is to integrate both the phoneme boundary detection and the phoneme
classification to create an automated tool for detecting phonemes.

Task 5:
We want to let the user manually add phonemes to the project. This requires the creation of a
new GUI element that contains the phonemes and lets the user drag and drop phonemes.

Task 6:
The most important part of this tool is being able to export the labeled data as a label file. We
are targeting the HTS singing label format for our output format.

Client Feedback

Got feedback from Client on 11/18/21 via Discord.

Date of meeting with Faculty Advisor: 11/29/21



Faculty Advisor feedback on milestone tasks:

● Evaluation by Faculty Advisor
● Faculty Advisor: detach and return this page to Dr. Chan (HC 214) or email the scores to

pkc@cs.fit.edu
● Score (0-10) for each member: circle a score (or circle two adjacent scores for .25 or

write down a real number between 0 and 10)

Carlos
Cepeda

0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Avinash
Persaud

0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Nandith
Narayan

0 1 2 3 4 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

■ Faculty Advisor Signature: _______________________________ Date: __________


