
Singing Labeling Data Tool
Design Document

Group members:
Nandith Narayan nnarayan2018@my.fit.edu
Avinash Persaud apersaud2018@my.fit.edu
Carlos Cepeda ccepeda2018@my.fit.edu

Advisor:
Dr. William Shoaff

System Architecture Diagram:

Input Data:
The user can import data into the project at any time. This data can be audio data, a list of
phonemes, a list of notes, a list of syllables, and the lyrics of the song(s). The user will be
presented with a Graphical User Interface to select which files to import into the project when
they press the import data button.

Intermediate Data Structure:
The intermediate data structure will store all the data required by the tool and the data inputted
by the user. This will be used to let the user save a project to load it later and resume labeling. It
will be a class which contains arrays of instances of label classes. These label classes will all
inherit from an abstract label class. So, every different type of label will have its own class. The
audio files will be represented by their path.

Upon clicking the save button, the contents of the intermediate data structure will be serialized
and written to files within a project folder. Upon loading a project, all the data from the saved
files will be read and parsed into the intermediate data structure. The data will be stored in a text
format and the audio files will be stored as a path to the file rather than the file itself.

Phoneme/Label Editor
This editor will contain text boxes for the user to input phoneme attributes. The Graphical User
Interface for this editor will contain buttons to add/remove attributes as well as edit them. All the
text from every text box will be concatenated and parsed as a whole. Parsing will use Antlr v4
as a parser generator.

Example grammar:
S -> statement*
statement -> assign | operation
assign -> label (dot attribute)? = value
label -> type openSqrBracket index closeSqrBracket
attribute -> identifier
operation -> label (dot attribute)? binaryOp value
binaryOp -> '*' | '-' | '+' | '/' | '^' | '%'
value -> integer
type -> identifier
index -> integer
dot -> '.'
openSqrBracket -> '['
closeSqrBracket -> ']'
identifier -> [a-z|A-Z|_]*
integer -> ‘-’? [0-9]*

Automation tools
The user will be able to click on the toolbar and select from a list of tools for automation. These
tools consist of automatic phoneme detection, and automatic phoneme alignment. Automatic
phoneme detection will generate a list of phonemes. Automatic phoneme alignment will align
those phonemes to the audio data.

Graphical User Interface
The graphical user interface will contain multiple scenes. These scenes are listed as follows, the
phoneme editor, the primary labeling scene, the import data scene, and the export scene. The
primary labeling scene will display a graphical representation of the raw audio data as well as a
spectrogram of the frequencies present in the audio data. It will also contain a timeline for
adding, removing, editing, and duplicating phonemes. Other feature layers can be added and
edited in a similar matter, including user defined layers based on premade layer types.

The import data scene will open up a window that will let the user select which files they desire
to import into the project. The export data scene will open up a window that will let the user
select where they want the output to be written to, as well as the format to output the data as.
The user will be able to use shortcuts like ctrl+c, ctrl+v, and ctrl+d to copy, paste, duplicate
phonemes on the timeline. The user will be able to use the scroll wheel to change the scaling of
the timeline and audio data.

HTS output format
The HTS output format represents the labels as regular expressions. The specification for this
format is as follows:

Time Level User Interface
The main project level User Interface will display the spectrogram and waveform of the audio
data as well as feature layers in a timeline format. By scrolling with the mouse wheel, the time
scale can be changed. The spectrogram and waveform display will be generated dynamically.
Feature layers will be overlaid on top of the spectrogram. The time dependent parts of the UI
will be drawn using a time_scale value that will be modified when the user scrolls the mouse
wheel or manually sets it in a dropdown menu.

